A recursion for a symmetric function generalization of the q-Dyson constant term identity
نویسندگان
چکیده
In 2000, Kadell gave an orthogonality conjecture for a symmetric function generalization of the q -Dyson constant term identity or Zeilberger–Bressoud theorem. The non-zero part Kadell's is indexed by weak composition v = ( 1 , … n ) in case when only one i ≠ 0 . This was first proved Károlyi, Lascoux and Warnaar 2015. They further formulated closed-form expression above mentioned all parts are distinct. Recently we obtained recursion this provided that largest occurs with multiplicity paper, generalize our previous result to compositions
منابع مشابه
A family of q-Dyson style constant term identities
By generalizing Gessel-Xin’s Laurent series method for proving the Zeilberger-Bressoud q-Dyson Theorem, we establish a family of q-Dyson style constant term identities. These identities give explicit formulas for certain coefficients of the q-Dyson product, including three conjectures of Sills’ as special cases and generalizing Stembridge’s first layer formulas for characters of SL(n,C). Mathem...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Aomoto’s machine and the Dyson constant term identity
Abstract. Aomoto has used the fundamental theorem of calculus to give an elegant proof of an extension of Selberg’s integral. A constant term formulation of Aomoto’s argument is based upon the fact that for 1 ≤ s ≤ n, the constant term in ts ∂/∂ts f(t1, . . . , tn) is zero provided that f(t1, . . . , tn) has a Laurent expansion around t1 = · · · = tn = 0. We use this as the engine for a simple ...
متن کاملA Constant Term Identity
Andrews's recent proof of the Mills-Robbins-Rumsey conjectured formula for the number of totally symmetric self-complementary plane partitions is used to derive a new multi-variate constant term identity, reminiscent of, but not implied by, Macdonald's BC,-Dyson identity. The method of proof consists in translating to the language of constant terms an expression of Doran for the desired number ...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105475